Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Gene ; : 148491, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649062

RESUMO

Genes encoding bovine leukocyte antigen (BoLA) enable the immune system to identify pathogens. Therefore, these genes have been used as genetic markers for infectious and autoimmune diseases as well as for immunological traits in cattle. Although BoLA polymorphisms have been reported in various cattle breeds worldwide, they have not been studied in cattle populations. In this study, we characterized BoLA-DRB3 in two local Egyptian populations and one foreign population using polymerase chain reaction-sequence-based typing (PCR-SBT) method. Fifty-four previously reported BoLA-DRB3 alleles and eight new alleles (BoLA-DRB3*005:08, *015:07, *016:03, *017:04, *020:02:02, *021:03, *164:01, and *165:01) were identified. Alignment analysis of the eight new alleles revealed 89.5-98.7 %, and 81.0-97.5 % nucleotide and amino acid identities, respectively, with the BoLA-DRB3 cDNA clone NR-1. Interestingly, BoLA-DRB3 in Egyptian cattle showed a high degree of allelic diversity in native (na = 28, hE > 0.95), mixed (na = 61, hE > 0.96), and Holstein (na = 18, hE > 0.88) populations. BoLA-DRB3*002:01 (14.3 %), BoLA-DRB3*001:01 (8.5 %), and BoLA-DRB3*015:01 (20.2 %) were the most frequent alleles in native, mixed, and Holstein populations, respectively, indicating that the genetic profiles differed in each population. Based on the allele frequencies of BoLA-DRB3, genetic variation among Egyptian, Asian, African, and American breeds was examined using Nei's distances and principal component analysis. The results suggested that native and mixed cattle populations were most closely associated with African breeds in terms of their gene pool, whereas Holstein cattle were more distinct from the other breeds and were closely related to Holstein cattle populations from other countries.

2.
Pathogens ; 12(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133334

RESUMO

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.

3.
Toxics ; 11(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37624223

RESUMO

Allergies to dogs and cats can cause enormous damage to human health and the economy. Dog and cat allergens are mainly found in dog and cat dander and are present in small particles in the air and in carpets in homes with dogs and cats. Cleaning houses and washing pets are the main methods for reducing allergens in homes; however, it is difficult to eliminate them completely. Therefore, we aimed to investigate whether a TiO2 photocatalyst could degrade dog and cat allergens. Under wet conditions, exposure to the TiO2 photocatalyst for 24 h degraded Can f1, which is a major dog allergen extracted from dog dander, by 98.3%, and Fel d1, which is a major cat allergen extracted from cat dander, by 93.6-94.4%. Furthermore, under dry conditions, the TiO2 photocatalyst degraded Can f1 and Fel d1 by 92.8% and 59.2-68.4%, respectively. The TiO2 photocatalyst abolished the binding of dog and cat allergens to human IgE by 104.6% and 108.6%, respectively. The results indicated that the TiO2 photocatalyst degraded dog and cat allergens, causing a loss in their allergenicity. Our results suggest that TiO2 photocatalysis can be useful for removing indoor pet allergens and improving the partnership between humans and pets.

4.
J Dairy Sci ; 106(12): 9393-9409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641252

RESUMO

Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Alelos , Suscetibilidade a Doenças/veterinária , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade
5.
Vet Sci ; 10(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104405

RESUMO

Enzootic bovine leukosis caused by the bovine leukemia virus (BLV) results in substantial damage to the livestock industry; however, we lack an effective cure or vaccine. BoLA-DRB3 polymorphism in BLV-infected cattle is associated with the proviral load (PVL), infectivity in the blood, development of lymphoma, and in utero infection of calves. Additionally, it is related to the PVL, infectivity, and anti-BLV antibody levels in milk. However, the effects of the BoLA-DRB3 allele and BLV infection on dairy cattle productivity remain poorly understood. Therefore, we investigated the effect of BLV infection and BoLA-DRB3 allele polymorphism on dairy cattle productivity in 147 Holstein dams raised on Japanese dairy farms. Our findings suggested that BLV infection significantly increased milk yield. Furthermore, the BoLA-DRB3 allele alone, and the combined effect of BLV infection and the BoLA-DRB3 allele had no effect. These results indicate that on-farm breeding and selection of resistant cattle, or the preferential elimination of susceptible cattle, does not affect dairy cattle productivity. Additionally, BLV infection is more likely to affect dairy cattle productivity than BoLA-DRB3 polymorphism.

6.
Pathogens ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678478

RESUMO

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.

7.
J Virol Methods ; 311: 114644, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332713

RESUMO

Bovine leukemia virus (BLV) is an enveloped virus, found worldwide that can infect cattle and induce many subclinical symptoms and malignant tumors. BLV infection causes severe economic losses in the cattle industry. The identification of BLV-infected cattle for segregation or elimination would be the most effective way to halt the spread of BLV infection on farms, owing to the lack of effective treatments and vaccines. Therefore, antibody detection against the viral glycoprotein gp51 is an effective method for diagnosing BLV-infected animals. In this study, ten different subregions of gp51 containing a common B cell epitope are vital for developing antigens as epitope-driven vaccine design and immunological assays. Such antigens were produced in Escherichia coli expression system to react with antibodies in the serum from BLV-infected cattle and compete for antigenicity. Recombinant His-gp5156-110 and gp5133-301(full) had the same sensitivity in BLV-positive sera, indicating that antibodies responded to the limited subregion of viral gp51, a common B cell epitope. This finding provides significant information for antigen selection in BLV to use in antibody detection assays. Further studies are needed to evaluate the antigenicity of His-gp5156-110 and gp5133-301(full) as antigens for antibody detection assays using a larger number of bovine serum samples.


Assuntos
Infecções por Deltaretrovirus , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Vírus da Leucemia Bovina/genética , Proteínas do Envelope Viral , Epitopos de Linfócito B/metabolismo , Anticorpos Antivirais , Leucose Enzoótica Bovina/diagnóstico
8.
Front Vet Sci ; 9: 1038101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504869

RESUMO

Introduction: Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods: We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results: First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion: This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.

9.
Retrovirology ; 19(1): 24, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329491

RESUMO

Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Vírus da Leucemia Bovina/genética , Provírus/genética , Integração Viral , Progressão da Doença
10.
Biochem Biophys Rep ; 32: 101379, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36373011

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic. Ultraviolet (UV) is regarded as a very powerful tool against SARS-CoV-2. However, the inactivating effects of different UV wavelengths on SARS-CoV-2 under the same conditions have hardly been compared. Here, we showed that SARS-CoV-2 cultured in Dulbecco's modified Eagle's medium and 2% fetal bovine serum was efficiently inactivated by irradiation with 222, 254, and 265 wavelengths UV, but not at 308 nm. In addition, it was revealed that UV absorption by DMEM-2% FBS is very efficient at 222 nm. Our results present potentially important information for selecting the optimum UV wavelength according to the application.

11.
Microorganisms ; 10(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144398

RESUMO

Natural products are attractive antiviral agents because they are environment-friendly and mostly harmless. Epigallocatechin gallate (EGCg), a type of catechin, is a well-known natural antiviral agent that can inhibit various viruses. However, EGCg easily oxidizes and loses its physiological activity. Although this problem can be overcome by combining EGCg with cyclodextrin (CD-EGCg), which makes it stable in water at high concentrations, the antiviral effect of this compound remains unclear. Here, we show that in Madin-Darby canine kidney (MDCK) and MRC-5 cells, CD-EGCg is cytotoxic for 50% of cells at 85.61 and 65.34 ppm, respectively. Furthermore, CD-EGCg mainly shows its antiviral effect during the adsorption step for all four influenza virus strains (median effect concentration (EC50) was 0.93 to 2.78 ppm). Its antiviral effect post-adsorption is less intense, and no inhibitory effect is observed on influenza viruses pre-adsorption. Moreover, human coronavirus 229E (HCoV-229E) was inhibited at the adsorption step in short contact (EC50 = 2.5 ppm) and long contact conditions (EC50 = 0.5 ppm) by mixing CD-EGCg with HCoV-229E. These results suggest that CD-EGCg effectively inhibits various viruses that require an adsorption step, and is an effective tool for preventing infection.

12.
Pathogens ; 11(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015043

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019, which has been a global pandemic. Since SARS-CoV-2 is transmitted through contaminated surfaces and aerosols, environmental disinfection is important to block the spread of the virus. Photocatalysts are attractive tools for virus inactivation and are widely used as air purifiers and coating materials. However, photocatalysts are inactive in the dark, and some of them need to be excited with light of a specific wavelength. Therefore, photocatalysts that can effectively inactivate SARS-CoV-2 in indoor environments are needed. Here, we show that a WO3 photocatalyst containing copper inactivated the SARS-CoV-2 WK-521 strain (Pango lineage A) upon irradiation with white light in a time- and concentration-dependent manner. Additionally, this photocatalyst also inactivated SARS-CoV-2 in dark conditions due to the antiviral effect of copper. Furthermore, this photocatalyst inactivated not only the WK-521 strain but also the Omicron variant BA.2. These results indicate that the WO3 photocatalyst containing copper can inactivate indoor SARS-CoV-2 regardless of the variant, in visible light or darkness, making it an effective tool for controlling the spread of SARS-CoV-2.

13.
Viruses ; 14(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746791

RESUMO

The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, arrests the cell cycle of the G2 phase, and this Vpr-mediated G2 arrest is implicated in an efficient HIV-1 spread in monocyte-derived macrophages. Here, we screened new candidates for Vpr-targeting HIV-1 inhibitors by using fission yeast- and mammalian cell-based high-throughput screening. First, fission yeast strains expressing the HIV-1 Vpr protein were generated and then treated for 48 h with 20 µM of a synthetic library, including 140,000 chemical compounds. We identified 268 compounds that recovered the growth of Vpr-overexpressing yeast. The selected compounds were then tested in mammalian cells, and those displaying high cytotoxicity were excluded from further cell cycle analysis and imaging-based screening. A flow cytometry analysis confirmed that seven compounds recovered from the Vpr-induced G2 arrest. The cell toxicity and inhibitory effect of HIV-1 replication in human monocyte-derived macrophages (MDM) were examined, and three independent structural compounds, VTD227, VTD232, and VTD263, were able to inhibit HIV-1 replication in MDM. Furthermore, we showed that VTD227, but not VTD232 and VTD263, can directly bind to Vpr. Our results indicate that three new compounds and their derivatives represent new drugs targeting HIV-1 replication and can be potentially used in clinics to improve the current antiretroviral therapy.


Assuntos
HIV-1 , Schizosaccharomyces , Animais , HIV-1/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Macrófagos , Mamíferos , Saccharomyces cerevisiae
14.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632737

RESUMO

Bovine leukemia virus (BLV) infects cattle and integrates into host DNA, causing enzootic bovine leukosis (EBL), an aggressive B-cell lymphoma. Here, we developed a novel proviral DNA-capture sequencing (proviral DNA-capture-seq) method investigating BLV proviral integration in two B-cell lymphoma lines, BLSC-KU1 and BLSC-KU17, derived from BLV-infected cattle with EBL. We designed BLV-specific biotinylated probes to capture the provirus genome and enrich libraries for next-generation sequencing. Validation showed high specificity and efficient enrichment of target sequence reads as well as identification of three BLV proviral integration sites on BLV persistently infected FLK-BLV cells as a positive control. We successfully detected a single BLV proviral integration site on chromosome 19 of BLSC-KU1 and chromosome 9 of BLSC-KU17, which were confirmed by standard PCR and Sanger sequencing. Further, a defective provirus in BLSC-KU1 and complete BLV proviral sequence in BLSC-KU17 were confirmed using long PCR and sequencing. This is the first study to provide comprehensive information on BLV proviral structure and viral integration in BLSC-KU1 and BLSC-KU17. Moreover, the proposed method can facilitate understanding of the detailed mechanisms underlying BLV-induced leukemogenesis and may be used as an innovative tool to screen BLV-infected cattle at risk at an earlier stage than those that have already developed lymphoma.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma de Células B , Animais , Bovinos , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Leucemia Bovina/genética , Linfoma de Células B/genética , Linfoma de Células B/veterinária , Provírus/genética
15.
Retrovirology ; 19(1): 7, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585539

RESUMO

BACKGROUND: The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. RESULT: In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. CONCLUSION: Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV.


Assuntos
Anticorpos Antivirais , DNA Viral , Vírus da Leucemia Bovina , Provírus , Anticorpos Antivirais/isolamento & purificação , Sangue/virologia , Neoplasias da Mama/virologia , DNA Viral/isolamento & purificação , Feminino , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/isolamento & purificação , Japão , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/imunologia , Provírus/genética
16.
Pathogens ; 11(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215153

RESUMO

Bovine leukemia virus (BLV), which causes enzootic bovine leukosis, is transmitted to calves through the milk of BLV-infected dams. Bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and proviral load (PVL). However, the effect of BoLA-DRB3 polymorphism on the infectivity and PVL of milk from BLV-infected dams remains unknown. This study examined milk from 259 BLV-infected dams, including susceptible dams carrying at least one BoLA-DRB3*012:01 or *015:01 allele with high PVL, resistant dams carrying at least one BoLA-DRB3*002:01, *009:02, or *014:01:01 allele with low PVL, and neutral dams carrying other alleles. The detection rate of BLV provirus and PVL were significantly higher in milk from susceptible dams than in that from resistant dams. This result was confirmed in a three-year follow-up study in which milk from susceptible dams showed a higher BLV provirus detection rate over a longer period than that from resistant dams. The visualization of infectivity of milk cells using a luminescence syncytium induction assay showed that the infectious risk of milk from BLV-infected dams was markedly high for susceptible dams compared to resistant ones. This is the first report confirming that BoLA-DRB3 polymorphism affects the PVL and infectivity of milk from BLV-infected dams.

17.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680045

RESUMO

Bovine leukemia virus (BLV) infection causes endemic bovine leukemia and lymphoma, resulting in lower carcass weight and reduced milk production by the infected cattle, leading to economic losses. Without effective measures for treatment and prevention, high rates of BLV infection can cause problems worldwide. BLV research is limited by the lack of a model system to assay infection. To overcome this, we previously developed the luminescence syncytium induction assay (LuSIA), a highly sensitive and objectively quantifiable method for visualizing BLV infectivity. In this study, we applied LuSIA for the high-throughput screening of drugs that could inhibit BLV infection. We screened 625 compounds from a chemical library using LuSIA and identified two that markedly inhibited BLV replication. We then tested the chemical derivatives of those two compounds and identified BSI-625 and -679 as potent inhibitors of BLV replication with low cytotoxicity. Interestingly, BSI-625 and -679 appeared to inhibit different steps of the BLV lifecycle. Thus, LuSIA was applied to successfully identify inhibitors of BLV replication and may be useful for the development of anti-BLV drugs.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Luminescência , Bioensaio , Células Gigantes
18.
HLA ; 99(2): 105-112, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854239

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine leukocyte antigen (BoLA)-DRB3 allele can influence the host immune response to pathogens, including BLV. However, association between specific BoLA-DRB3 alleles and BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, in Vietnamese cattle are unknown. Here, association study of BoLA-DRB3 allele frequency between cattle with high or low PVL demonstrated BoLA-DRB3*12:01 associates with high PVL in Vietnamese Holstein Friesian (HF) crossbred cattle. This is the first study to demonstrate that BoLA-DRB3 polymorphism confers susceptibility to BLV high PVL in HF crossbred kept in Vietnam. Our results may be useful in disease control and eradiation for BLV through genetic selection.


Assuntos
Bovinos , Vírus da Leucemia Bovina , Alelos , Animais , Bovinos/genética , Antígenos de Histocompatibilidade Classe II/genética , Vírus da Leucemia Bovina/genética , Provírus/genética , Vietnã , Carga Viral/veterinária
19.
Viruses ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835114

RESUMO

Human immunodeficiency virus type 1 (HIV-1) modulates the host cell cycle. The HIV-1 accessory protein Vpr arrests the cell cycle at the G2 phase in dividing cells, and the ability of Vpr to induce G2 arrest is well conserved among primate lentiviruses. Additionally, Vpr-mediated G2 arrest likely correlates with enhanced HIV-1 infection in monocyte-derived macrophages. Here, we screened small-interfering RNA to reveal candidates that suppress Vpr-induced G2 arrest and identified Huntingtin-interacting protein 1 (HIP1) required for efficient G2 arrest. Interestingly, HIP1 was not essential for Vpr-induced DNA double-strand breaks, which are required for activation of the DNA-damage checkpoint and G2 arrest. Furthermore, HIP1 knockdown suppressed HIV-1 infection in monocyte-derived macrophages. This study identifies HIP1 as a factor promoting Vpr-induced G2 arrest and HIV-1 infection in macrophages.


Assuntos
Proteínas de Ligação a DNA/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , RNA Interferente Pequeno , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia , Pontos de Checagem do Ciclo Celular , Células HEK293 , Células HeLa , Humanos , Macrófagos , Monócitos , Replicação Viral
20.
Pathogens ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34684230

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. Polymorphism in bovine lymphocyte antigen (BoLA)-DRB3 alleles is related to susceptibility to BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk. However, whether differential BoLA-DRB3 affects BLV infectivity remains unknown. In a three-year follow-up investigation using a luminescence syncytium induction assay for evaluating BLV infectivity, we visualized and evaluated the kinetics of BLV infectivity in cattle with susceptible, resistant and neutral BoLA-DRB3 alleles which were selected from 179 cattle. Susceptible cattle showed stronger BLV infectivity than both resistant and neutral cattle. The order of intensity of BLV infectivity was as follows: susceptible cattle > neutral cattle > resistant cattle. BLV infectivity showed strong positive correlation with PVL at each testing point. BLV-infected susceptible cattle were found to be at higher risk of horizontal transmission, as they had strong infectivity and high PVL, whereas BLV-infected resistant cattle were low risk of BLV transmission owing to weak BLV infection and low PVL. Thus, this is the first study to demonstrate that the BoLA-DRB3 polymorphism is associated with BLV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...